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Machine learning has led to tremendous progress in domains such as computer vision, speech recognition, and
natural language processing. Fueled by these advances, machine learning approaches are now being explored to
develop intelligent physical systems that can operate reliably in unpredictable environments. These include not
only robotic systems such as autonomous cars and drones, but also large-scale transportation and energy systems.
However, learning techniques widely used today are extremely data inefficient, making it challenging to apply them
to real-world physical systems. Moreover, they lack the necessary mathematical framework to provide guarantees
on correctness, causing safety concerns as data-driven physical systems are integrated in our society.

To develop safe and intelligent systems, we should certainly leverage the adaptability of the modern data-driven
approaches, but marry them with the classical approaches that have been used for decades to operate physical
systems reliably in controlled environments. My research combines tools from robust optimal control theory
with machine learning and computer vision to develop data-efficient and provably safe learning-based control
algorithms for physical robotic systems. By combining system dynamics models with data, these algorithms learn
to solve challenging perception and control problems in a priori unknown and hard-to-model environments in a
data-efficient fashion. Crucially, models are used not only for faster learning, but also to actively reason about safety
and take action to preserve it when necessary. The key novel contributions of my work are:

1) Data-efficient task-based learning using models and optimal control: developing optimal control-based
learning frameworks for efficiently completing a given control task in hard-to-model environments [1]–[5].

2) Data-efficient architectures for learning-based perception with model-based control: developing perception-
action loops that efficiently combine deep learning-based perception with an underlying dynamics model for
control, such as to navigate in a priori unknown environments [6].

3) Advancing the theory of optimal control for scalable safety analysis of learning-enabled systems: intro-
ducing new formulations, theorems, and computational tools to enable run-time safety assurance for learning-
enabled systems, including large-scale multi-agents systems [7]–[15].

4) Safety assurance for learning-enabled systems in unknown and human-centric environments: using the
above tools to construct safety envelopes around learning-based perception and human motion prediction
components, allowing robust motion plans to avoid collisions with obstacles and humans [16], [17].

(a) Data-efficient learning using optimal control to improve control
performance in hard-to-model environments, e.g., (i) ground effects for
quadrotors and (ii) fluid dynamics for jelly stirring task.

(b) Learning-based perception with
model-based control for data-efficient
navigation in unseen environments.

(c) Using models to provide safety
guarantees around learning-based hu-
man motion predictors.

Fig. 1: My work develops data-efficient and provably safe learning-based control algorithms for physical robotic systems.

Together, these contributions enable data-efficient learning both for capturing external, hard-to-model environment
effects, and for perception. Moreover, they allow for a safety analysis of the resulting learning-enabled systems.
Achieving the objectives of my research has required bridging different areas of research. This goes beyond under-
standing the fundamentals of controller design and robustness in control theory [7]–[12], [18], [19] to its intersection
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with computer vision, in collaboration with Jitendra Malik (UC Berkeley), Saurabh Gupta (UIUC) and Adam
Bry (Skydio) [6]; formal methods, in collaboration with Sanjit Seshia (UC Berkeley) and Alberto Sangiovanni-
Vincentelli (UC Berkeley) [14], [15]; and reinforcement learning and robotics, in collaboration with Sergey Levine
(UC Berkeley), Anca Dragan (UC Berkeley), Roberto Calandra (Facebook Research) and Aleksandra Faust (Google
Brain Robotics) [1]–[3], [17]. I have also connected these different communities through organizing workshops1 and
tutorials2 at conferences, and seminars at UC Berkeley3.

My research has also opened many promising future research directions. I will work on bridging the model-
based and statistical verification techniques for scalable safety analysis of data-driven systems (Sec. II-A). I will
work on robust integration between perception and control by using physical environment constraints to account
for inaccuracies in perception systems (Sec. II-B). I will use model-based control not only for analysis, but also
for actively gathering safety-critical data to design introspective learning-enabled systems for human-centric
environments (Sec. II-C). Finally, I am excited to venture beyond navigation and develop general representations
for interfacing perception and control for data-efficient control for other robotic tasks (Sec. II-D).

I. DATA-EFFICIENT AND PROVABLY SAFE LEARNING-BASED CONTROL FOR PHYSICAL ROBOTIC SYSTEMS

A. Data-efficient task-based learning using models and optimal control
Autonomous systems will inevitably experience external effects in unstructured environments, which are often hard
to model using first principles. I have developed learning frameworks that leverage methods from system identifi-
cation (SysID) and optimal control to efficiently capture these effects during the controller design process [1]–[4]
(Fig. 1a). For example, I combined Bayesian optimization and optimal-control in closed-loop to develop aDOBO
(Dynamics Optimization via Bayesian Optimization) [2], a framework for learning models of external effects that
are specific to control task at hand. Unlike traditional SysID approaches, aDOBO does not necessarily find the most
accurate dynamics model; instead, it learns a “coarse” model that can be learned with a small amount of data, and
yet yields the best closed-loop controller performance when provided to the optimal control method used. I have
collaborated with researchers at TU Munich to apply aDOBO to a 3-DoF robotic arm, which is tasked to stir jelly
in a given pattern [4]. Rather than accurately modeling the complex nonlinear fluid dynamics, aDOBO leverages
learning and optimal control for efficiently completing the task with a very high accuracy (Fig. 1a).

B. Data-efficient architectures for learning-based perception with model-based control
In many applications of interest, simple and well understood dynamics models are sufficient for control, and
it is rather the vision and perception components that require learning, such as to navigate in a priori unseen
environments. Typically, a geometric map of the environment is used for navigation; however, real-time map
generation can be challenging in texture-less environments or in the presence of transparent, shiny objects, or
strong ambient lighting. In contrast, end-to-end learning approaches side-step this explicit map estimation step,
but suffer from data inefficiency and lack of robustness. My factorized approach to robot navigation combine the
generalization capabilities of deep learning-based perception with the robustness of model-based control [6]. More
specifically, I trained a Convolutional Neural Network (CNN) that uses the RGB image observations to produce a
sequence of intermediate waypoints, which are used as targets for a model-based optimal controller to generate
smooth, dynamically feasible, and collision-free trajectories to be executed on the robot (Fig. 1b). Leveraging
underlying dynamics and feedback-based control not only accelerate learning, but also leads to trajectories that
are robust to variations in physical properties and noise in actuation. Through simulations and experiments on a
mobile robot, I demonstrate that the proposed approach is better (45% more successful at reaching the goals), more
efficient at reaching the goals (takes 35% less time), and results in smoother trajectories (56% less jerk), as compared
to end-to-end learning. Due to the real-world imperfections in depth measurements, the proposed approach is more
reliable (55% more successful) than geometric mapping-based approaches, as it does not explicitly rely on a map.

1 2019 RSS Workshop on Robust Autonomy: Safe Robot Learning and Control in Uncertain Real-World Environments
2 2017 CDC Tutorial on Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances
3 Design of Robotics and Embedded systems, Analysis, and Modeling Seminar (DREAMS)

https://sites.google.com/view/rss19safe/home
https://citris-uc.org/people-and-robots-seminar-series/
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Thanks to the presence of the visual and model-based feedback in the closed-loop, I demonstrate that the proposed
approach can be directly transferred from simulation to unseen, real-world environments without any finetuning or
data collection in the real-world (experiment videos on project website4). Although this work was only recently
published, it has already shown promising impact: it has been highlighted in Tech Xplore5, and has also sparked the
interest of many ground and aerial vehicle companies, including Skydio, Kiwi Campus, Ford, Nuro and Boeing.

C. Advancing the theory of optimal control for scalable safety analysis of learning-enabled systems
My work in Sec. I-A and I-B use models to develop data-efficient control mechanism both when learning is used
for capturing unmodeled external effects or for perception. However, in addition to improving data-efficiency, the
models can also be used to design learning-based systems that are analyzable. In my work, I use model-based
Hamilton-Jacobi-Isaacs (HJI) reachability analysis for safe learning and exploration [10]. HJI analysis provides
both the set of safe states and the corresponding safe controller for general nonlinear system dynamics. Since all
system constraints are satisfied within this set, learning can be performed safely inside it. The main challenge is
to scale HJI analysis to real-world autonomous systems because of its exponential computational complexity with
respect to the number of state variables. In my work, I address this challenge on multiple fronts by leveraging (a) the
structure in dynamics and control strategy [7]–[9], (b) offline computations [11], [12], and (c) modern computational
tools [13] to perform this analysis tractably. For example, on the computation front, I introduced BEACLS, a C++-
based reachability toolbox that can leverage modern computational tools such as GPUs to improve computation
speed of HJI reachability by nearly 100 times compared to existing implementations [13]. On the algorithm front,
rather than restarting the safety analysis from scratch, I proposed a method of “warm-start” reachability [12], which
uses a user-defined initialization (typically a previously computed solution). By warm-starting an HJI value function,
convergence may take significantly fewer iterations.

D. Safety assurance for learning-enabled systems in unknown and human-centric environments
As the autonomous system is operating in its environment, it may experience changes in system dynamics or external
disturbances, or it may evolve via learning-in-the-loop. Consequently, safety assurances need to be evaluated and
updated at operation-time. This becomes particularly challenging when the system is operating in an unknown
environment where even the unsafe states (such as obstacles) are not known a priori, such as navigation in an unseen
environment. In such cases, rather than verifying the learning-enabled perception component explicitly, which can
be quite challenging, I proposed an HJI reachability-based framework to compute and update a safe exploration
region for the system. Within this region, learning can be performed without compromising safety.

Treating the unsensed environment as occupied, a safe region for the system is computed such that as long as the
system is inside this set, it is guaranteed to avoid the collision regardless of the obstacle configuration in the unsensed
environment [16]. This computation also provides a safe controller that can be combined with any optimistic planner,
including learning-based planners, in a least-restrictive fashion, wherein the safety controller intervenes only when
the safety is at risk. As the vehicle traverses through the environment, it explores the environment, and the safe
region must be updated. Building on the scalable HJI analysis tools that I developed, I proposed a novel, real-time
algorithm for updating the safe set to reflect this exploration. The proposed algorithm only locally updates the
safe set in the newly sensed region while provably maintaining its conservativeness, significantly alleviating the
computational burden of HJI reachability. I deployed the framework on a mobile hardware testbed that is using the
learning-based perception-action loop discussed in Sec. I-B for navigation, but now also actively ensuring safety6.

II. FUTURE RESEARCH AGENDA

I envision future autonomous systems to be able to introspect and reason about the consequences of their actions,
and use this information to safely improve over time to achieve their goals. A key step towards achieving this goal

4 Project website: https://smlbansal.github.io/website-visual-navigation/
5 Tech Xplore (WayPtNav: A new approach for robot navigation in novel environments)
6 Experiment videos are on the project website: https://smlbansal.github.io/website-safe-navigation/

https://smlbansal.github.io/website-visual-navigation/
https://techxplore.com/news/2019-03-wayptnav-approach-robot-environments.html
https://smlbansal.github.io/website-safe-navigation/
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is to develop tools for scalable safety analysis of learning-enabled systems. I will bridge statistical and model-
based approaches to reduce the computational complexity of verification methods. Furthermore, I plan to design
robust perception systems that use tools from robust control to preemptively deal with prediction errors. I believe
a symbiotic relationship between learning and control is required not only for safe control, but also to understand
under what conditions the learning component leads to safety violations, and assisting it with collecting informative
data samples in dynamic, human-centric environments. Finally, I will explore general representations between
perception and control that allow the two to interface seamlessly for a variety of robotic and human-centric tasks.

A. Scalable safety analysis of data-driven systems

Fig. 2: Combining model-based
and sampling-based methods for
safety analysis. The framework can
assess that a car in front or its
shadow can occlude the lane, caus-
ing the failure of the perception
module, and safety violation.

I will continue to develop methods that can leverage the problem structure to achieve
scalable safety analysis wherever possible, but I believe that for learning-enabled
systems, we will need to bridge model-based analysis with statistical approaches
for safety. Statistical approaches are naturally suitable for learning components
that are inherently data-driven, whereas model-based approaches have been very
successful for dynamical systems. At the expense of a small probability of failure,
a rapprochement between the two has the potential to significantly alleviate the
computational complexity of the safety analysis. Our preliminary results in [14]
show that a sampling-based, data-driven approach can be combined with model-
based analysis to provide strong probabilistic safety guarantees on the closed-loop
system. I applied this framework for the safety analysis of a perception-action loop,
designed for lane keeping for an autonomous car (Fig. 2). I plan to further explore
these hybrid verification approaches for safety analysis of learning-enabled systems.

Much of my past work focuses on how to learn while satisfying safety constraints
but less on developing learning approaches for safety. The same power of modern compute and data that is fueling
perception can be leveraged to scale up verification and synthesis. This requires designing “correct-by-construction”
learning components to avoid circular reasoning. There are some promising initial results in this direction [10] which
I will investigate further in my group.

B. Robust integration between perception and control
Learning-based perception components will inevitably have prediction errors. Moreover, imprecise real-world sen-
sors will result in incomplete, inaccurate, and intermittent sensor data. From a control perspective, these can be
treated as sensor errors that affect the feedback controller. I will work on tools from robust control to design feedback
loops that are robust to such errors. I have taken some initial steps towards this direction where I model the prediction
error of the perception component as a “disturbance” in the dynamical system and generate a waypoint that is robust
to the worst-case disturbance. This preemptively provides a robustness margin for the perception module. I am very
excited to explore these ideas further in the future. Moreover, my work so far primarily leverages a system model for
designing robust learning-based controllers. However, physical environment constraints can also be used to increase
the perception robustness. For example, a human on the road cannot be classified as a deer at the next time step if
the perception system takes into account the implications of the dynamics constraints of the vehicle and the human
on its scene. System dynamics and physical constraints naturally couple its actions and perception. I will leverage
this coupling as a prior to develop robust perception systems for planning and control.

C. Designing introspective learning-enabled systems for human-centric environments
When a system operates in dynamic environments, such as in the presence of humans, we need to preemptively
understand how the system belief about the environment may change in light of data it is yet to observe. This self-
assessment can be used not only for safeguarding against potential catastrophic changes in the system, but can also
be a basis for active information gathering. For example, the realization that a narrow turn around the corner can lead
to a collision with an unobserved pedestrian can be used to teach the system to make a wider turn and first examine
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the intersection scenario. This active information gathering can ultimately enable self-diagnosis and self-repair in
learning-enabled systems. I have recently embarked in this direction in [17] where I formulated the problem of
finding all possible changes in the human behavior as a reachability problem. Possible future human observations
are treated as ‘input’ to a dynamical system, and how the belief over human intention changes based on the data
are the ‘dynamics’ of the system. Preliminary simulations and experiments indicate that this introspective nature
of the human motion predictor with respect to the unobserved data enables safe planning around humans while
being resilient to the changes in the data-driven predictive model (Fig. 1c). I will continue to work in this direction,
particularly on how these techniques can be used for active information gathering about humans.

D. General representations for interfacing perception and control
One important question that needs to be addressed to develop frameworks that seamlessly combine perception and
control is “what is the right representation to interface perception and control?” For example, a mobile robot might
need to open doors on its way to goal. The waypoint representation used in my work to interface perception and
control may not be sufficient for opening doors. I would like to explore the use of hybrid systems theory within this
context, where multiple different interfaces exist between perception and control, and the system will reason about
how to switch between these interfaces to achieve its goal. Another direction that I am very excited about is to learn
the correct representations between perception and control. As a first step towards this, I have started a collaboration
with visual neuroscientists at UC Berkeley where we are trying to understand the kind of representations humans
use to solve different tasks flexibly.

III. PROSPECTIVE LAB, COLLABORATIONS, AND FUNDING

Collaborations. My work on combining deep learning-based perception with model-based control has sparked
the interest of many aerial vehicle companies (Skydio and Boeing), ground vehicle companies (Kiwi Campus),
autonomous driving companies (Ford, Nuro and Toyota research), industrial research labs (DeepMind, Facebook
research, Google Brain Robotics), and various academic research labs. My safe multi-vehicle trajectory planning
work has helped in shaping NASA’s paradigm for integrating unmanned aerial vehicles into the national airspace.
More generally, my work has immediate connections with the domains of control, formal methods, computer vision,
reinforcement learning, robotics, and human-robot interaction. I look forward to continuing these collaborations, but
am also very excited to cultivate new ones. The proposed paradigms for integrating vision and control can help in
designing similar paradigms for general perception modalities, such as sound, language, and touch. At the core,
I study how learning and models should be combined together to make efficient and safe decisions. The obtained
insights can also be applied to general learning-enabled physical systems, such as transportation and energy systems.
In particular, my prior work on energy systems [18], [19] has left me with a lasting interest in this domain, which
I would like to explore further. Finally, I look forward to drawing inspiration from findings in cognitive science to
develop truly versatile and intelligent systems.

Lab. I plan to set up a lab ramping up to a size of 6-8 researchers (graduate students and postdocs). My lab will
be uniquely positioned not only to construct sound theoretical guarantees for autonomous systems, but also to carry
out hardware experiments to establish their validity in real robotic systems. An ideal starting space would consist of
office space and lab space dedicated to robotic testbeds. Equipment will include a motion capture area, a number of
quadrotors and true to scale ground vehicles, a dynamic legged robot, and a robotic arm.

Funding. Developing safe and intelligent autonomous systems is an important research agenda of various funding
programs, such as the Machine Learning, Reasoning and Intelligence program at ONR, and the Smart and Au-
tonomous Systems program at NSF. During my PhD studies, I have made significant contributions to successful
proposals for both funding agencies and industry. For example, I wrote the proposal for the Google Commons
program, and co-wrote proposals for the DARPA Assured Autonomy program and the NSF Frontier: VeHICal
project. Other than contributing to grant proposals, I have also actively participated in research discussions with
the corresponding program managers. My research work can also be funded through industry. I will build upon my
ongoing collaborations with companies such as Google Robotics, Boeing, and Toyota, and foster new ones.
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